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Abstract�The bivariate theory of generalized least-squares is
extended here to least-powers. The bivariate generalized least-
powers problem of order p seeks a line which minimizes the average
generalized mean of the absolute pth power deviations between the
data and the line. Least-squares regressions utilize second order
moments of the data to construct the regression line whereas least-
powers regressions use moments of order p to construct the line.
The focus is on even values of p, since this case admits analytic so-
lution methods for the regression coef�cients. A numerical example
shows generalized least-powers methods performing comparably to
generalized least-squares methods, but with a wider range of slope
values.
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I. OVERVIEW

FOR two variables x and y ordinary least-squares yjx
regression suffers from a fundamental lack of symmetry.

It minimizes the distance between the data and the regression
line in the dependent variable y alone. To predict the value
of the independent variable x one cannot simply solve for
this variable using the regression equation. Instead one must
derive a new regression equation treating x as the dependent
variable. This is called ordinary least-squares xjy regression.
The fact that there are two ordinary least-squares lines to
model a single set of data is problematic. One wishes to
have a single linear model for the data, for which it is valid
to solve for either variable for prediction purposes. A theory
of generalized least-squares was developed by this author to
overcome this problem by minimizing the average generalized
mean of the square deviations in both x and y variables [5]�
[8]. For the resulting regression equation, one can solve for
x in terms of y in order to predict the value of x: This theory
was subsequently extended to multiple variables [9].
In this paper, the extension of the bivariate theory of gen-

eralized least-squares to least-powers is begun. The bivariate
generalized least-powers problem of order p seeks a line which
minimizes the average generalized mean of the absolute pth
power deviations between the data and the line. Unlike least-
squares regressions which utilize second order moments of
the data to construct the regression line, least-pth powers
regressions utilize moments of order p to construct the line.
In the interest of generality, the de�nitions here are for-

mulated using arbitrary powers p. Nevertheless, the focus
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of this paper is on even values of p, since this case allows
for the derivation of analytic formulas to �nd the regression
coef�cients, analogous to what was done for least-squares.
The numerical example presented illustrates that bivariate
generalized least-powers methods perform comparably to gen-
eralized least-squares methods but have a greater range of
slope values.

II. BIVARIATE ORDINARY AND GENERALIZED
LEAST-POWERS REGRESSION

A. Bivariate Ordinary Least-Powers Regression OLPp
The generalization of ordinary least-squares regression

(OLS) to arbitrary powers is called ordinary least-powers
regression of order p and is denoted here by OLPp. OLS
is the same thing as OLP2. The case of OLP4, called least-
quartic regression, is described in a paper by Arbia [1].
De�nition 1: (The Ordinary Least-Powers Problem) Values

of a and b are sought which minimize an error function de�ned
by

E =
1

N

NX
i=1

ja+ bxi � yijp : (1)

The resulting line y = a + bx is called the ordinary least-
powers yjx regression line.
The explicit bivariate formula for the ordinary least-squares

error described by Ehrenberg [3] is generalized now to higher-
order regressions using generalized product-moments.
De�nition 2: De�ne the generalized bivariate product-

moment of order p = m+ n as

�m;n =
1

N

NX
i=1

(xi � �x)
m �
yi � �y

�n (2)

for whole numbers m and n.
Theorem 3: (Explicit Bivariate Error Formula) Let p be an

even whole number and let F = Eja=�y�b�x : Then

E =
X

r+s+t=p

(�1)s
�

p

r; s; t

�
�r;sb

r
�
a� �y � b�x

�t (3)

or

E =
X

r+s+t=p;t6=0
(�1)s

�
p

r; s; t

�
�r;sb

r
�
a� �y � b�x

�t
+ F

where

F =

pX
r=0

(�1)p�r
�
p

r

�
�r;p�rb

r: (4)
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Proof: Assume p is even and omit absolute values. Begin
with the error expression and manipulate as follows:

E =
1

N

NX
i=1

(a+ bxi � yi)p

=
1

N

NX
i=1

�
b (xi � �x)�

�
yi � �y

�
+
�
a� �y � b�x

��p
=

1

N

NX
i=1

X
r+s+t=p

(�1)s
�

p

r; s; t

�
br

� (xi � �x)
r �
yi � �y

�s �
a� �y � b�x

�t
=

X
r+s+t=p

(�1)s
�

p

r; s; t

�
br

�
(
1

N

NX
i=1

(xi � �x)
r �
yi � �y

�s)�
a� �y � b�x

�t
=

X
r+s+t=p

(�1)s
�

p

r; s; t

�
�r;sb

r
�
a� �y � b�x

�t
:

Now separate out the terms with t = 0 and obtain

E =
X

r+s+t=p;t6=0
(�1)s

�
p

r; s; t

�
�r;sb

r
�
a� �y � b�x

�t
+ F

where

F =
X
r+s=p

(�1)s
�

p

r; s; 0

�
�r;sb

r

=

pX
r=0

(�1)p�r
�
p

r

�
�r;p�rb

r:

Observe that applying the trinomial expansion theorem to the
error expression E and then setting a = �y�b�x produces the
same result F as �rst setting a = �y � b�x and then applying
the binomial expansion:

F =
1

N

NX
i=1

�
b (xi � �x)�

�
yi � �y

��p
=

1

N

NX
i=1

pX
r=0

�
p

r

�
br (xi � �x)

r �
yi � �y

�p�r
(�1)p�r

=

pX
r=0

(�1)p�r
�
p

r

�

�
(
1

N

NX
i=1

(xi � �x)
r �
yi � �y

�p�r)
br

=

pX
r=0

(�1)p�r
�
p

r

�
�r;p�rb

r:

Example 4: For p = 2, which is least-squares,

F = �2;0b
2 � 2�1;1b+ �0;2: (5)

In more familiar notation this is

F = �2xb
2 � 2�xyb+ �2y: (6)

For p = 4,

F = �4;0b
4 � 4�3;1b3 + 6�2;2b2 � 4�1;3b+ �0;4: (7)

For p = 6,

F = �6;0b
6 � 6�5;1b5 + 15�4;2b4 � 20�3;3b3

+15�2;4b
2 � 6�1;5b+ �0;6:

(8)
Theorem 5: (Bivariate OLP Regression) The OLPp yjx

regression line y = a+ bx is obtained by solving

F 0 (b) =

pX
r=1

(�1)p�r r
�
p

r

�
�r;p�rb

r�1 = 0 (9)

for b and setting

a = �y � b�x:
(10)

Example 6: For p = 2, which is least-squares, one solves

0 = �2;0b� �1;1: (11)

For p = 4 one solves

0 = �4;0b
3 � 3�3;1b2 + 3�2;2b� �1;3: (12)

For p = 6 one solves

0 = �6;0b
5 � 5�5;1b4 + 10�4;2b3

�10�3;3b2 + 5�2;4b� �1;5:
(13)

Now that the analog of OLS, called OLP, has been de-
scribed, the corresponding bivariate theory of generalized
least-powers can be described as well.

B. Bivariate Generalized Means and XMRp Notation
The axioms of a generalized mean were stated by us

previously [8], [9] drawing from the work of Mays [11]
and also from Chen [2]. They are stated here again for
convenience.
De�nition 7: A function M (x; y) de�nes a generalized

mean for x; y > 0 if it satis�es Properties 1-5 below. If
it satis�es Property 6 it is called a homogeneous generalized
mean. The properties are:
1. (Continuity) M (x; y) is continuous in each variable.
2. (Monotonicity) M (x; y) is non-decreasing in each vari-
able.

3. (Symmetry) M (x; y) =M (y; x) :
4. (Identity) M (x; x) = x:
5. (Intermediacy) min (x; y) �M (x; y) � max (x; y) :
6. (Homogeneity) M (tx; ty) = tM (x; y) for all t > 0:
All known means are included in this de�nition. All

the means discussed in this paper are homogeneous. The
generalized mean of any two generalized means is itself a
generalized mean.
XMRp notation is used here to name generalized regres-

sions: if `X' is the letter used to denote a given generalized
mean, then XMRp is the corresponding generalized least-pth
power regression. XMR2 is the same thing as XMR without a
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subscript. For example, `G' is the letter usually used to denote
the geometric mean and GMRp is least-pth power geometric
mean regression. AMRp is least-pth power arithmetic mean
regression. The generalization of orthogonal least-squares re-
gression to least-powers is HMRp since orthogonal regression
is the same as harmonic mean regression.

C. The Two Generalized Least-Powers Problems and the
Equivalence Theorem

The general symmetric least-powers problem is stated as
follows.
De�nition 8: (The General Symmetric Least-Powers Prob-

lem) Values of a and b are sought which minimize an error
function de�ned by

E =
1

N

NX
i=1

M

�
ja+ bxi � yijp ;

����ab + xi � 1b yi
����p� (14)

where M (x; y) is any generalized mean.
De�nition 9: (The General Weighted Ordinary Least-

Powers Problem) Values of a and b are sought which minimize
an error function de�ned by

E = g (b) � 1
N

NX
i=1

ja+ bxi � yijp : (15)

where g (b) is a positive even function that is non-decreasing
for b < 0 and non-increasing for b > 0.
The next theorem states that every generalized least-powers

regression problem is equivalent to a weighted ordinary least-
powers problem with weight function g (b).
Theorem 10: Every general symmetric least-powers error

function can be written equivalently as

E = g (b) � 1
N

NX
i=1

ja+ bxi � yijp (16)

where

g (b) = M

�
1;

1

jbjp
�
:

(17)
Proof: Substitute ab +xi�

1
byi with

1
b (a+ bxi � yi) and

then use the homogeneity property:

E =
1

N

NX
i=1

M

�
ja+ bxi � yijp ;

ja+ bxi � yijp

jbjp
�

=
1

N

NX
i=1

ja+ bxi � yijpM
�
1;

1

jbjp
�
:

De�ne

g (b) =M

�
1;

1

jbjp
�
;

and factor g (b) outside of the summation.

D. How to Find the Regression Coef�cients

The fundamental practical question of bivariate generalized
least-powers regression is how to �nd the coef�cients a and
b for the regression line y = a + bx. The case of least-
even-power regressions can be solved analytically, analogous
to how generalized least-squares regressions are solved. For p
even, to �nd the regression coef�cients a and b; take the �rst
order partial derivatives of the error function Ea and Eb and
set them equal to zero. Solving Ea = 0 yields a = �y� b�x.
Solving Eb = @E

@b = 0 and then setting a = �y � b�x is
equivalent to setting a = �y � b�x �rst and then solving
dF
db =

@E
@b

��
a=�y�b�x

= 0: The latter procedure is employed
here because it is simpler.
Theorem 11: (Solving for the Generalized Regression Co-

ef�cients) For p even, the generalized least-powers slope b is
found by solving:

d

db
fg (b)F (b)g = 0 (18)

where

F =

pX
r=0

(�1)p�r
�
p

r

�
�r;p�rb

r (19)

and the y-intercept a is given by

a = �y � b�x: (20)

E. The Hessian Matrix

In order for the regression coef�cients (a; b) to minimize
the error function and be admissible, the Hessian matrix of
second order partial derivatives must be positive de�nite when
evaluated at (a; b). The general Hessian matrix is calculated
next. As in the case of generalized least-squares, certain
combinations of g and its �rst and second partial derivatives
appear in the matrix. One combination is denoted here by
J and another is denoted by G. They are called indicative
functions.
De�nition 12: De�ne the indicative functions

J (b) =
g00 (b)

g (b)
� 2

�
g0 (b)

g (b)

�2
(21)

and

G (b) =
2g0 (b)

g (b)
� g

00 (b)

g0 (b)
: (22)

The two indicative functions are related by the equation
F 0=F = J=G. The latter differential equation can be solved
explicitly for g (b). One obtains [6]

g (b) =
1

c+ k
R
exp

�
�
R
G (b) db

�
db
: (23)

Theorem 13: (Hessian matrix) The Hessian matrix H of
second order partial derivatives of the error function given by

H =

�
H11 H12
H21 H22

�
: (24)
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is computed explicitly as follows:

H11 = Eaa = p (p� 1) gFp�2 (25)

H12 = H21 = Eab = Eba = pg

�
g0

g
Fp�1 + F

0
p�1

�
(26)

H22 = Ebb = g (JF + F
00) : (27)

Alternatively,
H22 = g (GF

0 + F 00) : (28)
Proof: Take second order partial derivatives of the error

and evaluate at the solution (a; b). Let E = EOLP for purposes
of this proof and assume p is even.

H22 =
@2

@b2
(gE)

=
@

@b
(g0E + gEb)

= g00E + 2g0Eb + gEbb:

Since g0E + gEb = 0 at the solution, substitute Eb = � g0

g E
into the middle term, simplify, and obtain

H22 = g

  
g00

g
� 2

�
g0

g

�2!
E + Ebb

!
which is the �rst form of the Hessian. Now substitute E =
� g
g0Eb and obtain the second form

H22 = g

��
2g0

g
� g

00

g0

�
Eb + Ebb

�
:

As before, upon substituting for a, E = F , Eb = F 0 and
Ebb = F

00. For H11;

H11 =
@2

@a2
(gE)

=
@2

@a2

 
g � 1
N

NX
i=1

(a+ bxi � yi)p
!

= g � p (p� 1) � 1
N

NX
i=1

(a+ bxi � yi)p�2

= g � p (p� 1) � 1
N

NX
i=1

�
b (xi � �x)�

�
yi � �y

�
+
�
a� �y � b�x

��p�2
= g � p (p� 1) � 1

N

NX
i=1

�
b (xi � �x)�

�
yi � �y

��p�2
= g � p (p� 1) � Fp�2:

For H12 = H21,

H12 =
@2

@b@a
(gE)

= p
@

@b

 
g � 1
N

NX
i=1

(a+ bxi � yi)p�1
!

= p
�
g0Fp�1 + gF

0
p�1
�
:

Theorem 14: The Hessian matrix H is positive de�nite at
the solution point (a; b) provided that detH > 0:

Proof: H is positive de�nite provided that H11 > 0 and
detH > 0. In our case H11 = g (b) � p (p� 1) �Fp�2 (b) > 0
for all b. Therefore it suf�ces to evaluate the determinant
numerically at the slope b.

III. REGRESSION EXAMPLES BASED ON KNOWN SPECIAL
MEANS

A. Arithmetic Mean Regression (AMRp)
The arithmetic mean is given by

A (x; y) =
1

2
(x+ y) : (29)

This mean generates arithmetic mean regression AMRp. The
weight function is given by

g (b) =
1

2

�
1 +

1

jbjp
�
: (30)

The general AMRp slope equation for p even is given by�
bp+1 + b

�
F 0 (b)� pF (b) = 0: (31)

The AMR2 slope equation is

0 = �2;0b
4 � �1;1b3 + �1;1b� �0;2: (32)

The AMR4 slope equation is

0 = �4;0b
8 � 3�3;1b7 + 3�2;2b6 � �1;3b5

+�3;1b
3 � 3�2;2b2 + 3�1;3b� �0;4:

(33)

The AMR6 slope equation is

0 = �6;0b
12 � 5�5;1b11 + 10�4;2b10 � 10�3;3b9

+5�2;4b
8 � �1;5b7 + �5;1b5 � 5�4;2b4

+10�3;3b
3 � 10�2;4b2 + 5�1;5b� �0;6: (34)

B. Geometric Mean Regression (GMRp)
The geometric mean is given by

G (x; y) = (xy)
1=2
: (35)

This mean generates geometric mean regression GMRp. The
weight function is given by

g (b) = jbj�p=2 : (36)

The general GMRp slope equation for p even is

2bF 0 (b)� pF (b) = 0: (37)

The GMR2 slope equation is

0 = �2;0b
2 � �0;2: (38)

The GMR4 slope equation is

0 = �4;0b
4 � 2�3;1b3 + 2�1;3b� �0;4: (39)

The GMR6 slope equation is

0 = �6;0b
6 � 4�5;1b5 + 5�4;2b4

�5�2;4b2 + 4�1;5b� �0;6: (40)
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C. Harmonic Mean (Orthogonal) Regression (HMRp)
The harmonic mean is given by

H (x; y) =
2xy

x+ y
: (41)

This mean generates harmonic mean regression HMRp. The
weight function is given by

g (b) =
2

1 + jbjp : (42)

The general HMRp slope equation for p even is

(bp + 1)F 0 (b)� pbp�1F (b) = 0: (43)

The HMR2 slope equation is

0 = �1;1b
2 +

�
�2;0 � �0;2

�
b� �1;1: (44)

The HMR4 slope equation is

0 = �3;1b
6 � 3�2;2b5 + 3�1;3b4

+
�
�4;0 � �0;4

�
b3 � 3�3;1b2

+3�2;2b� �1;3: (45)

The HMR6 slope equation is

0 = �5;1b
10 � 5�4;2b9 + 10�3;3b8 � 10�2;4b7

+5�1;5b
6 +

�
�6;0 � �0;6

�
b5 � 5�5;1b4

+10�4;2b
3 � 10�3;3b2 + 5�2;4b� �1;5: (46)

Harmonic mean regression is the same thing as orthogonal
regression. This is because of the Reciprocal Pythagorean
Theorem [4], [12] which says that the diagonal deviation
between a data point and the regression line is half the
harmonic mean of the horizontal and vertical deviations.

D. Ordinary Least-Powers xjy Regression (OLPp xjy)
The selection mean given by

Sx (x; y) = x (47)

generates OLPp yjx regression. The selection mean given by

Sy (x; y) = y (48)

generates OLPp xjy regression. The weight function corre-
sponding to OLPp yjx is given by

g (b) = 1: (49)

The weight function corresponding to OLPp xjy is given by

g (b) =
1

jbjp : (50)

The general OLPp yjx slope equation for p even is

F 0 (b) = 0 (51)

The speci�c equations for p = 2; 4; and 6 were already
described.
The general OLPp xjy slope equation for p even is

bF 0 (b)� pF (b) = 0 (52)

The OLP2 xjy slope equation is

0 = �1;1b� �0;2: (53)

The OLP4 xjy slope equation is

0 = �3;1b
3 � 3�2;2b2 + 3�1;3b� �0;4: (54)

The OLP6 xjy slope equation is

0 = �5;1b
5 � 5�4;2b4 + 10�3;3b3

�10�2;4b2 + 5�1;5b� �0;6: (55)

IV. REGRESSION EXAMPLES BASED ON GENERALIZED
MEANS

The generalized means in the next examples have free
parameters which can be used to parameterize these and other
known special cases.

A. Weighted Arithmetic Mean Regression

The weighted arithmetic mean with weight � in [0; 1] is
given by

M� (x; y) = (1� �)x+ �y (56)

for x � y.
The weight function corresponding to the weighted arith-

metic mean is

g (b) = (1� �) + � jbj�p : (57)

For weighted AMRp;� the general slope equation for p even
is �

(1� �) bp+1 + �b
�
F 0 (b)� �pF (b) = 0: (58)

The weighted AMR2;� slope equation is

0 = (1� �)�2;0b4 � (1� �)�1;1b3 + ��1;1b� ��0;2 (59)

The weighted AMR4;� slope equation is

0 = (1� �)�4;0b8 � 3 (1� �)�3;1b7

+3 (1� �)�2;2b6 � (1� �)�1;3b5

+��3;1b
3 � 3��2;2b2

+3��1;3b� ��0;4: (60)

The weighted AMR6;� slope equation is

0 = (1� �)�6;0b12 � 5 (1� �)�5;1b11

+10 (1� �)�4;2b10 � 10 (1� �)�3;3b9

+5 (1� �)�2;4b8 � (1� �)�1;5b7

+��5;1b
5 � 5��4;2b4 + 10��3;3b3

�10��2;4b2 + 5��1;5b� ��0;6 (61)
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B. Weighted Geometric Mean Regression
The weighted geometric mean with weight � in [0; 1] is

given by
M� (x; y) = x

1��y� (62)

for x � y.
The weight function corresponding to the weighted geomet-

ric mean is given by

g (b) = jbj�p� : (63)

For weighted GMRp;� the general slope equation for p even
is

bF 0 (b)� p�F (b) = 0: (64)

The weighted GMR2;� slope equation is

0 = (1� �)�2;0b2 + (2� � 1)�1;1b� ��0;2 (65)

The weighted GMR4;� slope equation is

0 = (1� �)�4;0b4 � (3� 4�)�3;1b3

+3 (1� 2�)�2;2b2 � (1� 4�)�1;3b� ��0;4:
(66)

The weighted GMR6;� slope equation is

0 = (1� �)�6;0b6 � (5� 6�)�5;1b5

+5 (2� 3�)�4;2b4 � 10 (1� 2�)�3;3b3

+5 (1� 3�)�2;4b2 � (1� 6�)�1;5b� ��0;6:
(67)

C. Power Mean Regression
The power mean of order q, for q 6= 0, is given by

Mq (x; y) =

�
1

2
(xq + yq)

�1=q
(68)

with M0 (x; y) = G (x; y), M�1 (x; y) = min (x; y) and
M1 (x; y) = max (x; y).
Many other special means are speci�c cases as well: q = �1

is the harmonic mean, q = � 1
2 was the basis for squared

harmonic mean regression (SHR), q = 1
2 was the basis for

square perimeter regression (SPR), q = 1 is the arithmetic
mean and q = 2 is called the root-mean-square [5], [8].
Many other special means are approximated well by

power means: M�1=3 (x; y) approximates the second log-
arithmic mean L2 (x; y) and

�
HG2

�1=3 well, M1=3 (x; y) ;
called the Lorentz mean, approximates the �rst logarithmic
mean L1 (x; y) well, and M2=3 (x; y) approximates both the
Heronian mean N (x; y) and the identric mean I (x; y) well.
This is proven in our earlier paper [8].
The weight function is given by

g (b) =

�
1

2

�
1 + jbj�pq

��1=q
: (69)

The general PMRp;q slope equation for p even is

(bpq + 1) bF 0 (b)� pF (b) = 0: (70)

The PMR2;q slope equation is

0 = �2;0b
2q+2 � �1;1b2q+1 + �1;1b� �0;2 (71)

The PMR4;q slope equation is

0 = �4;0b
4q+4 � 3�3;1b4q+3

+3�2;2b
4q+2 � b4q+1�1;3

+�3;1b
3 � 3�2;2b2 + 3�1;3b� �0;4: (72)

The PMR6;q slope equation is

0 = �6;0b
6q+6 � 5�5;1b6q+5 + 10�4;2b6q+4

�10�3;3b6q+3 + 5�2;4b6q+2 � �1;5b6q+1

+�5;1b
5 � 5�4;2b4 + 10�3;3b3

�10�2;4b2 + 5�1;5b� �0;6: (73)

D. Regressions Based on Other Generalized Means
As was done in our previous paper [8] for p = 2, regression

formulas for p > 2 based on other generalized means can
be worked out. The Dietel-Gordon Mean of order r, the
Stolarsky mean of order s; the two-parameter Stolarsky mean
of order (r; s), the Gini mean of order t, the two-parameter
Gini mean of order (r; s) are alternative generalized means
which parameterize the known speci�c cases. Details on these
means and the corresponding references can be found in that
paper. We leave the detailed slope equations in these cases
for a future work in this series.

V. EQUIVALENCE THEOREMS
A. Solving for the Generalized Mean Parameter as a Function
of the Slope
For the case of weighted AMR, weighted GMR, and PMR

the free parameter in these cases can solved for explicitly
in terms of the slope. The result of doing this yields an
equivalence theorem.
Theorem 15: (Weighted Arithmetic Mean Equivalence The-

orem) Let b be the slope of a generalized least-powers regres-
sion line with p even. Then the line can be generated by an
equivalent weighted arithmetic mean regression with weight
� given by

� =
bp+1F 0 (b)

(bp+1 � b)F 0 (b) + pF (b) (74)

with
b = bOLP yjx + !

�
bOLP xjy � bOLP yjx

�
(75)

and ! in [0; 1] :
Proof: Solve the weighted AMRp;� slope equation for

�.
Theorem 16: (Weighted Geometric Mean Equivalence The-

orem) Let b be the slope of a generalized least-powers regres-
sion line with p even. Then the line can be generated by an
equivalent weighted geometric mean regression with weight �
given by

� =
bF 0 (b)

pF (b)
(76)

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 357



with
b = bOLP yjx + !

�
bOLP xjy � bOLP yjx

�
(77)

and ! in [0; 1] :
Proof: Solve the weighted GMRp;� slope equation for

�.
Theorem 17: (Power Mean Equivalence Theorem) Let b be

the slope of a generalized least-powers regression line with p
even. Then the line can be generated by an equivalent power
mean regression of order q with

q =
1

p
ln

�
pF (b)� bF 0 (b)

bF 0 (b)

�
= ln b: (78)

Proof: Solve the weighted PMRp;q slope equation for q:

For b > 0, if the interval
�
bOLP yjx; bOLP xjy

�
does not

contain 1, or for b < 0, if the interval
�
bOLP xjy; bOLP yjx

�
does not contain �1, then every regression line lying between
the two ordinary least-powers lines is generated by a power
mean of order q for some q in (�1;1) with the ordinary
least-powers lines corresponding to q = �1. This was shown
in detail for the case of least-squares [8].

B. The Exponential Equivalence Theorem and the Fundamen-
tal Formula for Generalized Least-Powers Regression
In the bivariate case of generalized least-squares it was

shown [7], [8] that every weighted ordinary least-squares
regression line can be generated by an equivalent exponen-
tially weighted regression with weight function g0 (b) =
exp (�P0 jbj) for  in [0; 1]. This theorem generalizes to
least-powers regressions as well.
Theorem 18: (The Extremal Line) For exponentially

weighted ordinary least-powers regression with weight func-
tion g (b) = exp (�P jbj), the regression line generated by the
maximum value of P is called the extremal line. The slope
of the extremal line bEXT is computed by solving

F 00 (b)F (b)� (F 0 (b))2 = 0 (79)

and the maximum value of P , called P0, is computed by

P0 = sgn (bEXT)
F 0 (bEXT)

F (bEXT)
: (80)

As the parameter P varies over the interval [0; P0] all
exponentially weighted least-powers regressions are generated.

Proof: Consider the weight function g (b) =
exp (�P jbj). To �nd the slope b, one must solve

d

db
fexp (�P jbj)F (b)g = 0

or

exp (�P jbj) (�P ) (sgn b)F (b) + exp (�P jbj)F 0 (b) = 0

which is equivalent to writing

P (b) = sgn b
F 0 (b)

F (b)
:

To �nd the maximum value of P one must solve

P 0 (b) = sgn b
F 00 (b)F (b)� (F 0 (b))2

(F (b))
2 = 0

or simply
F 00 (b)F (b)� (F 0 (b))2 = 0

for b. Call the resulting value bEXT. To insure that the value
is a maximum, one must also verify that

P 00 (bEXT) < 0:

The corresponding maximum value of P is P0 = P (bEXT).
Example 19: For p = 2 one obtains

�22;0b
2 � 2�2;0�1;1b+

�
�2;0�0;2 � 2�21;1

�
= 0 (81)

which in covariance notation is

�4xb
2 � 2�2x�xyb+

�
�2x�

2
y � 2�2xy

�
= 0: (82)

This can be solved explicitly to obtain the slope of the extremal
line. It can also be expressed using covariances or standard
deviations and correlation coef�cients as in the previous papers
[7], [8]:

b =
�1;1 �

q
�2;0�0;2 � �21;1
�2;0

(83)

=
�xy �

q
�2x�

2
y � �2xy

�2x
(84)

= �
�y
�x
� �y
�x

p
1� �2: (85)

For p = 4 one obtains

0 = �24;0b
6 � 6�4;0�3;1b5

+
�
12�23;1 + 3�4;0�2;2

�
b4

�
�
24�3;1�2;2 � 4�4;0�1;3

�
b3

�
�
3�4;0�0;4 � 18�22;2

�
b2

�
�
12�2;2�1;3 � 8�3;1�0;4

�
b

�
�
3�2;2�0;4 � 4�21;3

�
: (86)

For p = 6 one obtains

0 = �26;0b
10 � 10�6;0�5;1b9

+
�
30�25;1 + 15�6;0�4;2

�
b8

�120�5;1�4;2b7

�
�
20�6;0�2;4 � 80�5;1�3;3 � 150�24;2

�
b6

+
�
30�5;1�2;4 � 300�4;2�3;3 + 18�6;0�1;5

�
b5

+
�
75�4;2�2;4 � 5�6;0�0;6

�60�5;1�1;5 + 200�23;3
�
b4

+
�
20�5;1�0;6 � 200�3;3�2;4 + 60�4;2�1;5

�
b3

�
�
30�4;2�0;6 � 75�22;4

�
b2

+
�
20�3;3�0;6 � 30�2;4�1;5

�
b

�
�
5�2;4�0;6 � 6�21;5

�
:

(87)
Since one cannot solve these equations explicitly when p >

2 one solves the equations numerically for b instead. One
selects the real root that shares the same sign as bOLP and is
greater than bOLP in absolute value.
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Theorem 20: (Exponential Equivalence Theorem) De�ne
the normalized exponential parameter  = P=P0 so that
g0 (b) = exp (�P0 jbj) for  in [0; 1]. Then every weighted
generalized least-powers regression line with slope b is also
generated by an equivalent exponentially weighted regression
with normalized exponential parameter

 =
1

P0
sgn b

F 0 (b)

F (b)
: (88)

The case  = 0 is OLPp yjx regression. The case  = 1 is
the extremal line.

Proof: For an arbitrary weight function g (b), the slope b
is found by solving d fg (b)F (b)g =db = 0 which is equivalent
to �g0 (b) =g (b) = F 0 (b) =F (b) at the solution. However,
it is already known that for a �xed slope b there exists a
constant P in [0; P0] such that P sgn b = F 0 (b) =F (b) : Thus
P = � (sgn b) g0 (b) =g (b) and for every weight function g
and slope b there is a corresponding value for the exponential
parameters P and  = P=P0.
Since b always lies in the interval between bOLP and bEXT;

the fundamental formula of generalized least-powers regres-
sion follows.
Theorem 21: (Fundamental Formula of Generalized Least-

Powers Regression) Every weighted generalized least-powers
regression line y = a+ bx has the form

b = bOLP + � (bEXT � bOLP) (89)
a = �y � b�x (90)

for some � = � () in [0; 1].
Once the slope b of a regression line is known, the corre-

sponding value of � can be determined numerically using

� =
b� bOLP
bEXT � bOLP

: (91)

The function  =  (�) can be determined explicitly by
composing  =  (b) with b = b (�). The result is

 =
1

P0
sgn b

F 0 (bOLP + � (bEXT � bOLP))
F (bOLP + � (bEXT � bOLP))

: (92)

For p = 2 only, the parameters  and � are related by the
simple formulas  = sin

�
2 tan�1 �

�
and � = tan

�
1
2 sin

�1 
�

[8].

VI. NUMERICAL EXAMPLE
This section revisits an example explored in the previous

work. Regressions corresponding to OLPp, HMRp, GMRp,
AMRp and the extremal line are computed for p = 2; 4;
and 6. The corresponding effective weighted arithmetic and
geometric mean parameters � and � are computed. The
effective exponential parameters  and � are also computed.
Example 22: This example appears in our previous papers

and is originally from Martin [10]. Six data values are given:
(0; 6), (1; 4), (2; 3), (3; 4), (4; 2), and (5; 1). The reader can
verify that � = �0:9157, �x = 2:5000, �y = 3:3333, �x =
1:7078, and �y = 1:5986.
The second order product-moments are: �0;2 = 2:5556,

�1;1 = �2:5000, �2;0 = 2:9167: The fourth order product-
moments are: �0;4 = 13:9630, �1;3 = �13:8333, �2;2 =

13:9352, �3;1 = �14:1250, �4;0 = 14:7292. The sixth order
product-moments are: �0;6 = 87:7956, �1;5 = �86:0802,
�2;4 = 84:8200, �3;3 = �83:9583, �4;2 = 83:6227, �5;1 =
�83:9063, �6;0 = 85:1823:
The generalized regression lines are plotted together with

the extremal line thereby displaying the region containing all
admissible generalized regression lines.

0 2 4 6
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6
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0 2 4 6
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x

y

p = 4

0 2 4 6
0

1

2

3

4

5

6

7

x

y
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The equation of each line is presented along with the
exponential parameters  and �, the weighted arithmetic mean
parameter �, and the weighted geometric mean parameter
�. In all cases one uses  = 1

P0
(sgn b)F 0 (b) =F (b) and

� = (b� bOLP) = (bEXT � bOLP) : According to the exponential
equivalence theorem, all regression lines are generated for
p = 2 by g0 (b) = exp (�2:6584 jbj), for p = 4 by
g0 (b) = exp (�4:3714 jbj), and for p = 6 by g0 (b) =
exp (�6:4294 jbj).

2=p bxay += γ λ α β
xy |OLP2 xy 8571.04762.5 −= 0000.0 0000.0 0000.0 0000.0

2HMR xy 9304.06593.5 −= 3752.0 1947.0 4283.0 4640.0

2GMR xy 9361.06735.5 −= 4019.0 2098.0 4670.0 5000.0

2AMR xy 9409.06855.5 −= 4241.0 2226.0 5000.0 5304.0
yx |OLP2 xy 0222.18889.5 −= 7360.0 4389.0 0000.1 0000.1

2EXT xy 2333.14166.6 −= 0000.1 0000.1 _ _

4=p bxay += γ λ α β
xy |OLP4 xy 7864.02993.5 −= 0000.0 0000.0 0000.0 0000.0

4HMR xy 8515.04622.5 −= 3703.0 0920.0 2166.0 3446.0

4GMR xy 8967.05750.5 −= 5102.0 1557.0 3926.0 5000.0

4AMR xy 9276.06523.5 −= 5668.0 1993.0 5000.0 5746.0
yx |OLP4 xy 1774.12767.6 −= 7772.0 5519.0 0000.1 0000.1

4EXT xy 4948.10703.7 −= 0000.1 0000.1 _ _

6=p bxay += γ λ α β
xy |OLP6 xy 7562.02239.5 −= 0000.0 0000.0 0000.0 0000.0

6HMR xy 7902.03088.5 −= 2312.0 0407.0 0559.0 1958.0

6GMR xy 9183.06291.5 −= 5081.0 1939.0 3749.0 5000.0

6AMR xy 9655.07471.5 −= 5340.0 2504.0 5000.0 5524.0
yx |OLP6 xy 2554.14719.6 −= 7433.0 5973.0 0000.1 0000.1

6EXT xy 5921.13135.7 −= 0000.1 0000.1 _ _

It is readily observed that for p = 2, the slope values lie in
the interval [�1:2333;�0:8571] with a range of 0:3762. For
p = 4, the slope values lie in the interval [�1:4948;�0:7864]
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with a range of 0:7084. The range for p = 4 is approximately
1.9 times as long as the range for p = 2: For p = 6, the slope
values lie in the interval [�1:5921;�0:7562] with a range of
0:8359. The range for p = 6 is approximately 2.2 times as
long as the range for p = 2:
For p = 2, the interval between the two OLP slopes is

[�1:0222;�0:8571] with a range of 0:1651. For p = 4, the
interval between the two OLP slopes is [�1:1774;�0:7864]
with a range of 0:3910. The range for p = 4 is approximately
2.4 times as long as the range for p = 2: For p = 6, the
interval between the two OLP slopes is [�1:2554;�0:7562]
with a range of 0:4992. The range for p = 6 is approximately
3.0 times as long as the range for p = 2:

VII. SUMMARY
Least-powers regressions minimizing the average gener-

alized mean of the absolute pth power deviations between
the data and the regression line are described in this paper.
Particular attention is paid to the case of p even, since
this case admits analytic solution methods for the regression
coef�cients. Ordinary least-squares regression generalizes to
ordinary least-powers regression. The case p = 2 corresponds
to the generalized least-squares regressions of our previous
works. The speci�c cases of arithmetic, geometric and har-
monic mean (orthogonal) regression are worked out in detail
for the case of p = 2, 4 and 6.
Regressions based on weighted arithmetic means of order �

and weighted geometric means of order � are also worked out.
The weights � and � continuously parameterize all generalized
regression lines lying between the two ordinary least-powers
lines. Power mean regression of order q has �xed values
of q corresponding to many known special means and offers
another way to parameterize the generalized mean regressions
previously described.
Every generalized mean regression with error function given

by

E =
1

N

NX
i=1

M

�
ja+ bxi � yijp ;

����ab + xi � 1b yi
����p� (93)

is equivalent to a weighted ordinary least-powers regression
with error function

E = g (b) � 1
N

NX
i=1

ja+ bxi � yijp (94)

and weight function

g (b) =M

�
1;

1

jbjp
�

(95)

where M (x; y) is any generalized mean.
The exponential equivalence theorem states that every

weighted ordinary least-powers regression line can be gen-
erated by an equivalent exponentially weighted regression
with weight function g0 (b) = exp (�P0 jbj) for  in [0; 1].
The case  = 0 corresponds to OLPp yjx and the case
 = 1 corresponds to the extremal line. It follows that
every generalized least-powers line has slope given by b =
bOLP + � (bEXT � bOLP) for � = � () in [0; 1] and y-intercept

given by a = �y � b�x. This is referred to here as the
fundamental formula of generalized least-powers regression,
since it characterizes all possible regression lines in a simple
way.
A simple numerical example shows generalized least-

powers regressions performing comparably to generalized
least-squares but with a wider range of slope values. The ap-
plication of bivariate generalized least-powers to non-normally
distributed data and the potential advantage of these methods
over generalized least-squares is a subject of the next paper in
this series. The extension of this theory to multiple variables
is also a subject of the next paper in this series.
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